
PD
F

Bl
og

AcroTEX.Net

AcroTEX PDF Blog

Scripting Bridge

ActionScript to JavaScript

D. P. Story

The source files for this AcroTEX PDF Blog are attached to this PDF:
AlertConsoleTst.mxml is the MXML source file for the SWF file
of this article, and AlertConsoleTst.swf is the SWF file. The
Adobe Flex SDK was used to compile AlertConsoleTst.mxml
to obtain AlertConsoleTst.swf.

Copyright © 2008 dpstory@acrotex.net http://www.acrotex.net
AcroTEX PDF Blog #3 Published: October 9, 2008

mailto:dpstory@acrotex.net
http://www.acrotex.net

PD
F

Bl
og

Table of Contents

1 Introduction 3

2 ActionScript to JavaScript 3

2.1 Communicating with ExternalInterface.call 4

• The Alert button . 5

• The Console button . 6

3 One problem 6

PD
F

Bl
og

3

1. Introduction

AcroTEX PDF Blog #3 continues the discussion of the rich media annotation, a new feature of
version 9 of the Acrobat application. The Scripting Bridge represents the two-way communi-
cation between a Flash application and Acrobat. The primary focus of this article is on the
communication link from the Flash application (SWF file) to Acrobat (PDF file).

The scripting language of Adobe Flash is ActionScript, and for Acrobat it is JavaScript; conse-
quently, this article demonstrates how ActionScript can be used to communicate with, pass
data to, and execute functions within Acrobat.1

2. ActionScript to JavaScript

An Adobe Flash application can call two types of JavaScript:

• Top-level JavaScript (global) functions. Of these, the most useful is the eval() func-
tion.2

• Document JavaScript functions. Functions defined at the document-level can be called
from within a Flash application. The document JavaScript can be viewed/edited through
the menu Advance > Document Processing > Document JavaScripts.

As mentioned above, the eval() function is most useful because it gives us access to all the
JavaScript for Acrobat API. For example, executing

eval("console.println(’Hi World’)")

from the Flash application writes this classic message the the JavaScript Debugger Console
window.

This PDF file contains a document JavaScript that will be called by the Flash widget on the next
page. The verbatim listing is

function myAcroAlert(obj) {
var rtn=app.alert(obj);
return rtn;

}
1When viewing or executing script, Acrobat and Adobe Reader have the same functionality, unless otherwise

noted. Acrobat Pro (Extended) is used to create a rich media annotation through its user interface. Adobe Reader
cannot create rich media annotations.

2See the Core JavaScript 1.5 Reference for information on the standard global objects and functions at the
Mozilla Developer Center (http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference).

http://developer.mozilla.org/en/Core_JavaScript_1.5_Reference

PD
F

Bl
og

ActionScript to JavaScript 4

Note that myAcroAlert takes an object as its argument. This object is passed to the app.alert
method. See Acrobat for JavaScript API Reference for more information on the app.alert
method. Basically, the object passed is of the form

{cMsg: <string>, nIcon: <number>, nType: <number>, cTitle:<string>}

The cMsg key is used to set the message of the alert, nIcon is used to select the icon that is
displayed, nType is used to set the buttons that appear on the alert dialog box, and cTitle is
a sting that appears in the title.

The rich media annotation displays the AlertConsoleTst.swf Flash application.

When you click the Console button (a Flash button, not an Acrobat forms button), the text that
appears in the text field is written to the console window of Acrobat. When you click the Alert
button, the document function myAcroAlert is called from the Flash application. The alert
message is the text that appears in the text box. Note that the icon and the number of buttons
that appear in the alert dialog box change as the alert button is pressed again and again. When
one of the buttons is pressed on the alert dialog box, the return value of app.alert is a number
that

2.1. Communicating with ExternalInterface.call

The Flash application developer can call an JavaScript function from the SWF widget using the
call method of the ExternalInterface class3

var retn:Object=ExternalInterface.call(
functionName:String,...arguments);

To bring the ExternalInterface.call function into your SWF file, you need to exe-
cute import flash.external.*, or, import flash.external.ExternalInterface,

3http://livedocs.adobe.com/flex/3/langref/index.html

http://livedocs.adobe.com/flex/3/langref/index.html

PD
F

Bl
og

ActionScript to JavaScript 5

within the mx:Script tag.

In the next two sections, we describe the use of ExternalInterface.call and how
it was use in the AlertConsoleTst.swf file. The reader should consult the source file
AlertConsoleTst.mxml for a complete listing.

• The Alert button

When the Alert button is pressed, the following function is executed from within the SWF file.
This function calls the document JavaScript function, myAcroAlert, listed earlier in this blog,
and also calls the eval function to report the return value to the console.

private function myAlert():void {

currentIcon and currentType are integer value variables, we perform mod 4 arithmetic to
cycle through the values of the nIcon and nType key.

currentIcon = ++currentIcon % 4;
currentType = ++currentType % 4;

We populate the alertMsg object with the argument parameters. The value of cMsg is
myText.text, this is the text that appears in the text field between the two buttons.

var alertMsg:Object = {cMsg:myText.text, nIcon: currentIcon,
nType: currentType, cTitle:"AcroTeX"};

Execute ExternalInterface.call with the string "myAcroAlert" as the first argument,
with the list of parameters following. Here the only parameter is the object literal alertMsg.
The return value is saved in result

var result:Number = ExternalInterface.call("myAcroAlert", alertMsg);
var respStr:String;

Depending on the value of result, we build a string to write back to the Acrobat Debugger
Console window.

switch (result) {
case 1: respStr = "You pressed the \"OK\" button"; break;
case 2: respStr = "You pressed the \"Cancel\" button"; break;
case 3: respStr = "You pressed the \"No\" button"; break;
case 4: respStr = "You pressed the \"Yes\" button"; break;
default: respStr = "I’m not sure what you did!";

}

Finally, we execute ExternalInterface.call, with "eval" as the first argument. For the
second argument, we use "console.println(’"+respStr+"’)". The eval function in

PD
F

Bl
og

6

Acrobat, executes its argument, thus, console.printlnwith the respStr as its argument is
executed and respStr is written to the Console window.

var retn1:Object=ExternalInterface.call(
"eval", "console.println(’"+respStr+"’)");

}

• The Console button

The function myConsole() is executed when the Console button is pressed is very simple.
The verbatim listing follows:

private function myConsole():void {
// show Acrobat JavaScript Console
var retn1:Object=ExternalInterface.call("eval", "console.show()");
var retn2:Object=ExternalInterface.call("eval",

"console.println(’"+myText.text+"’)");
}

The function first opens the console window, this is needed for users of Adobe Reader where
there is no user interface to the console window. Next, we execute eval again, this time to
write the value of text field to the Console.

3. One problem

When I sent this blog to my friend Jürgen, the first thing he tried was to type is name into the
text field of the AlertConsoleTst widget. He loves his ü (u-umlaut). The Console button
worked well, it wrote “Jürgen” to the Console window, the result was not a good one with the
Alert button. Try entering Jürgen name, I used unicode, J\u00FCrgen which worked for the
Console button, for the Alert button, the alert message was J\u00FCrgen. I need to do more
research into this problem, perhaps one of you out there in the PDF/Flash/FLEX community
already knows the answer? What say you?

The next AcroTEX PDF Blog will cover JavaScript to ActionScript communication, but for now, I
simply must get back to my retirement. DPS

	Table of Contents
	1 Introduction
	2 ActionScript to JavaScript
	2.1 Communicating with ExternalInterface.call
	• The Alert button
	• The Console button

	3 One problem

 import flash.external.ExternalInterface;

 private function initApp():void {
 stage.scaleMode = StageScaleMode.SHOW_ALL;
 };

 private function myConsole():void {
 // show Acrobat JavaScript Console
 var retn1:Object=ExternalInterface.call("eval", "console.show()");
 var retn2:Object=ExternalInterface.call("eval", "console.println('"+myText.text+"')");
 }
 private var currentIcon:int = 0;
 private var currentType:int = 0;
 private function myAlert():void {
 currentIcon = ++currentIcon % 4;
 currentType = ++currentType % 4;
 var alertMsg:Object = {cMsg:myText.text,nIcon: currentIcon, nType: currentType, cTitle:"AcroTeX"};
 var result:Number = ExternalInterface.call("myAcroAlert", alertMsg);
 var respStr:String;
 switch (result) {
 case 1: respStr = "You pressed the \"OK\" button";
 break;
 case 2: respStr = "You pressed the \"Cancel\" button";
 break;
 case 3: respStr = "You pressed the \"No\" button";
 break;
 case 4: respStr = "You pressed the \"Yes\" button";
 break;
 default: respStr = "I'm not sure what you did!";
 }
 var retn1:Object=ExternalInterface.call("eval", "console.println('"+respStr+"')");
 }

 Panel {
 borderColor: #b7babc;
 borderAlpha: 0;
 backgroundAlpha: 0;
 backgroundColor: #b7babc;
 }

